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An efficient algorithm for first-order grid intersections, by computing geomet-
rically the intersection volume between donor and target zones, is developed for
polyhedral meshes. We examine two applications of grid intersections. One appli-
cation is first-order remapping, in which zone and node centered fields defined on
a given mesh are transferred to a different mesh. The second application is region
overlays, in which a region with homogeneous material properties is approximated
by a grid of polyhedra and mapped onto an arbitrary hexahedral mesh, creating
mixed zones on the boundary of the region. We demonstrate the use of this grid
intersection algorithm within the framework of hydrodynamics simulations, and us-
ing a domain decomposed mesh, we study the feasibility of a parallel implementa-
tion.  © 1999 Academic Press
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1. BACKGROUND

We examine two applications of polyhedral grid intersection calculations, as they rel
to hydrodynamics simulations. One application is direct remapping, in which physical fie
such as the mass density, which are defined on a “donor” mesh, are transferred to an unre
“target” mesh. We assume that both meshes have been provided and focus on the geor
computations and applications here. Another application is to approximate a specific reg
such as a sphere, with a set of polyhedral zones, to estimate the fraction of each target
that is contained within the sphere. This feature is useful, for example, to initialize proble
for multimaterial hydrodynamics codes, such that the mesh boundaries are not design
specifically conform to the surface of the sphere, but instead, the boundary of the sphe
modeled using mixed zones, and interface reconstruction methods [1] are used during
hydrodynamics simulation to maintain the integrity of the material boundary.

433

0021-9991/99 $30.00
Copyright(© 1999 by Academic Press
All rights of reproduction in any form reserved.



434 JEFFREY GRANDY

We consider two grids, a donor mesh witly zones and a target mesh with zones.
For a general grid intersection, we compute the integral of some field quattitydefined
within a zonezy of the donor mesh, over the figure of intersection between zgaad a
zonez on the target mesh. The result is

| (2a: 2) = / dxq(x), )
P(z4:2t)

whereP(zy; z) is the figure of intersection. This is a two-phase calculation; one must fir
obtain boundaries of the figufe, and subsequently evaluate the integral witRinin a
first-order grid intersection, we take the field to be constant throughout the donor zone

q(X) = O 2

so that (1) becomes

1 (zg; z2) = V(Zd; Zt) Oz, 3

whereV (z4; z) is the volume of intersection betweenandz.

Various methods have been utilized to perform grid intersection calculations, includi
geometric methods which are capable of giving an exact definitigh mfimerical methods,
and sampling technigues. A two-dimensional grid intersection calculation by Horak |
illustrates a sampling method in which a donor zone is represented by a set of points, ¢
assigned a partial area of the donor zone. The target zone containing a sample point rec
the area from the donor zone associated with that sample point. Another type of samp
calculation is to approximate the donor and target zones using Cartesian voxels (pix
in three (two) dimensions and to perform an intersection between octrees (quadtrees)
An advantage of sampling is that it can handle donor and target zones with complice
boundaries; a disadvantage is the slow convergence of the intersection volume (or ar
2d) as the number of sample points increases.

Three-dimensional grid intersections have been utilized in a second-order remapping ¢
by Dukowicz and Padial [4]. In their computation of the volume of intersection betwe
hexahedral zones, they define the zone boundaries as the quadric surfaces that fori
bilinear interpolations between the four corner nodes of each face. A hybrid algorithn
used to approximate the figure of intersection. Gauss’ theorem is applied twice to con
the volume integral (1) to line integrals along the edges and curves on the boundan
P. A geometric calculation of points of intersection between donor edges and target fa
(in general, quadric surfaces) and vice versa is followed by a Runge—Kutta procedur
construct curves of intersection and numerical integration along these curves to comy
the calculation ofi . However, Dukowicz and Padial have also pointed out certain cas
in which their algorithm runs into difficulty. Since this technique relies on surface—ed
intersections to form the endpoints of surface—surface intersection curves, such curvesw
do not contain an endpoint on the edge, but instead are confined within the boundarie
the surface, are missed. In addition, self-intersecting zones or parity-inverted zones, w
can occur in highly distorted meshes, can cause misidentification of intersections betw
edges and surfaces. Aresult of missed intersectionsis local loss of conservation of integi
field quantities, such as mass and momentum. Aware of these potential causes of fai
Dukowicz and Padial have implementgdst factochecks of the results of the remap, and
perturbed the mesh nodes and repeated the remap, where a failure is detected. Howevel
perturbation procedures are unreliable since there &sproori guarantee that the modified
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mesh will produce a successful remap result, and mesh perturbation also systemati
reduces the accuracy of the remap.

The primary purpose of this article is to develop a geometric algorithm in three dime
sions that handles every possible intersection between donor and target polyhedral z
producing an exact determination8f Our geometric method can also provide a sensibl
result when a zone within the mesh, or a group of zones, is self-intersecting. We hat
various degenerate cases that would otherwise cause the computa#ion; pt;) to fail,
without altering the positions of the donor or target nodes. We use filtering procedu
that identify candidates for intersecting donor and target zones by comparing coordin
for these zones, and this procedure enables us to handle pathological meshes that c
self-intersecting zones. The exact details of the filtering depend on the types of grids;
filtering procedures for remapping (Section 3.3) and region overlays (Section 4.2) diffe

Since we focus on the geometric technique, we list applications of first-order grid
tersections here. Dukowicz [5] has shown (in two dimensions) that repeated applicati
of first-order remapping can cause unacceptable levels of diffusion and we expect s
lar behavior in three dimensions. We will therefore emphasize single-use application:
remapping, as opposed to frequent use within a hydrodynamics simulation. Our algori
is based on computing the volume of intersection between a triangular polyhedron at
tetrahedron, and by convention we choose the target grid to be composed of tetrahe
zones. In Section 3 we describe the generalization to hexahedral zones, and in Sect
we utilize donor octahedra and target hexahedra. We can easily apply this method to c
target grids with polyhedral zones by decomposing target zones into tets, and triangule
faces of donor polyhedra.

2. INTERSECTION OF A POLYHEDRON WITH A TETRAHEDRON

We describe the intersection volume calculation between a donor triangular polyhec
and a target tetrahedron in this section. We label the donor zgraand, for convenience,
define two labels for the target zone. We assume that each target f@sbeen subdivided
into n¢(z) tets, labeled bk:. The volume of intersection is denoted Yyzy; z, k;). The
geometry algorithm, as designed for nonconvex polyhedra, scal@smasin: (z)), where
the donor polyhedron hag 4 facets and by Euler’s formula

Ned = 3/2N+ g (4)

edges. This geometry algorithm is therefore best suited for volumes of intersection betw
nonconvex polyhedra with relatively small numbers of facets, and for large, convex
piecewise convex polyhedra, other algorithms with better scaling are available [6]. For
remainder of Section 2 we will refer to donor facets and edgssidacesandsegmentgo
distinguish from the target.

The first step is to perform the affine transformation, to cast the target tet to the L
tetrahedrory, with corners at

0 = (0,0,0)
X = (1,0,0) -
Y = (0,1, 0)

Z=(00,1).
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By defining a fourth coordinate
h=1-x—-y—z (6)

we castU as a regular tetrahedron in the hyperplane (6) in the four-dimensiggah(
space, and therefore, most intersection calculations treat these four coordinates in a
metric fashion. The determinant of the mathk(z, k;) that performs this transformation
from physical coordinates§, Yo, 2o) to theU-frame coordinatesx( y, z) is

detM(z, ki) = 6V (#, k), @)

whereV (z, k;) is the volume of constituent tkt within the target zone,. By transforming
the donor zone, we find that

V(24 i, k) = detM(z, k) v(zg; z, ki), 8)

wherev(zg; z, ki) is the intersection volume between the transformed donor zon&and
Since the donor zone is a triangular polyhedron, we compute the volume associated
each donor surfacé&; by defining a column by projecting ttee> 0 portion of the triangle
onto thez=0 plane and finding the volume of intersectiofey, fq; z, ki) between the
column for the surfacdy andU, so that

Ntd

v(zZg; z, k) = Zv(zd’ fa; zt, ke). ()]

fg=1

By definition, if the donor zone lies entirely in tlze< O half plane, the volume is zero.
Also, if the donor zone is abowd in the z-direction, the individual donor surfaces give
nonzerav, but the volumes associated with all of the surfaces cancel. For a simple, positiv
oriented donor zone,

0 <v(zg; 1, k) < 1/6. (10)

The calculation ob, for a given donor triangular surface in thieframe, requires deter-
mination of the polygo®\, which lies in the interior otJ, and the polygom, which is the
projection of the triangle from the-z direction onto thén = 0 facet ofU (Figure 1), and
is the sum

v=v(A) +v(B) (12)
the volume between the polygons and the O plane. In Figure 1, a donor surface is
represented by trianglRQR with vertices Ky, Yp, Zp), etc. The polygons for the triangle

PQRsatisfy the following identities:

Mz—0(A) U TIz—0(B) = MM;—o(PQRN (z > 0)) N U 12)
[Mz—0(A) N T1;=0(B) =0 (13)
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FIG. 1. Intersections between triangkQRandU are vertices for polygoA, and the projection d?QRfrom
the+z direction onto théh =0 facet defines polygoB.

whereU; is the triangle in the =0 plane, with corner®, X, andY. The operatoil,_q
denotes the projection onto tlze=0 plane. The first condition (12) states that the twc
polygons fill the area of the projection of tke- 0 part ofPQRonto thez= 0 plane inside
U,, and the second condition is that the polygons do not overlap. The intersections
defineA are computed symmetrically in all four coordinates, and the coordirzadesl

h only play a special role in determinirig) since we have chosen to project through the
h =0 plane onto the=0 plane. Sincev is computed from two-dimensional polygons,
it is sufficient to identify the vertices of the polygons, and order them by angle relati
to an interior point. If the same vertex is identified multiple times, the accuraeyi®f
not affected, but all vertices must be identified at least once. By finding volumes as
ciated with individual donor triangular surfacdg, we also do not need to assume that
the donor zone is convex. We first discuss the method for computing fq; z, ki) with
exact arithmetic, and subsequently show modifications needed for computer floating p
arithmetic.

2.1. Computation of Volume

We describe the calculation offor triangle PQRfor the case of exact arithmetic with
explicit handling of degenerate cases, where intersecting face@QBfandU have total
rank <3. If exact arithmetic were indeed available, we would preferably remove dege
eracies explicitly by symbolic perturbation [7], but we present this discussion to provids
framework for computer arithmetic calculation@fOur definitions for the faces &f are
shown in Table I, and the faces BQRare defined in Table Il. Each face is defined to be
the set of points generated by interpolating between the specified corners. We refer tc
infinite extensions of facets and edgedJofis planes and axes.

Intersection existence tests are based on the coordinates @f and R, and double
and triple products combining these coordinates. The double products for seg@ent
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TABLE |
Faces of U
Corners  Description  Polygons Corners Description  Polygons
O O corner A Y,Z yzedge A,B
X X corner A,B Z, X zxedge A,B
Y Y corner A,B 0.,Y,Z x =0 facet A
z Z corner A,B 0,Z, X y=0 facet A
0O, X x-edge A O, X, Y z=0 facet A
0.Y y-edge A X, Y, Z h=0 facet A,B
0,2 z-edge A O, X,Y,Z Interior A?

X, Y xy-edge A,B

2 Interior points withh =0 are also irB.
are

pq _
Cxy = Xp¥q — ¥pXq

€Y7 = YpZq — ZpYq
chd = ZpXq — XpZg
- (14)
Ceh = Xphg — NpXq
C;’/Jr? = Yphg — hpYq
Cih = Zphg — hpzg
and the triple products fd?PQR associated with the cornersdf are
Xp Xq X hpy hg hy
to=|¥p Yg Y| x=—|¥p Yq ¥/,
z Z z Z
p P X (15)
Xp Xq X Xp Xg X
tYZ_hp hq hr,tzz_yp Yo W
Z, g % hp hg h;

We immediately eliminate the case where triang@Rhas no area and assigr=0 in
this case. A surface-edge intersection occuPRsurrounds the axis containing the edge
(the double products with respect to the edge are identical sign) and the two corner endp

TABLE I
Faces ofPQR
Corners  Description Corners  Description
P Vertex PQ Segment
Q Vertex QR Segment
R Vertex RP Segment

POR Surface
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TABLE 11l
Edges of U

Edge Corners Double product  Triple products

X X, O G2 ty, to
y Y, O Czx ty, to
z Z0 Cey tz,to
yz Y, Z Ceh tv, tz
ZX Z X Cyh tz, tx
Xy XY Gh ty, ty

are on opposite sides of the surface. Fontkexge, we define the Boolean variables

Ex(PQR = (cficl, > 0); (cficl; > 0),

Dx(PQR = (totx <0);  (to —tx #0),

(16)

where E4(PQR determines that the triangle surrounds the akig(PQR checks that
cornersO and X are not both in the same half space bounded by the plaR€Q&and
that both corners are not in the plandRg)R(both triple products zero). If one of the triple
products is zero, the surface exactly intersects the corner, and this degenerate interse
is permitted by our definition oDy (PQR. The intersection is confirmed by

Ex(PQR and D« (PQR. (a7)

Tests for other edges are derived by replacipgand the triple products in (16) with the
appropriate combinations from Table lIl.

An analogous test confirms intersections between segmentsfacdts. The three edges
on the facet must surround the segment, and the two vertices must be on opposite sid
the facet. To test for intersection with thie- O facet we define two Boolean variables,

F.(PQ = (—chchd > 0): (—chicli>0),

S(PQ) = (zpzg < 0); (Zp #2Zq),

(18)

and the intersection test is
F.(PQ and S$(PQ). (19)

We list the double products which must all have the same sign and coordinates in
definitions forF andSfor all four facets in Table IV.

The testsF (PQ) include only nonzero double products, and we handle zero douk
products as a special case, testing for degenerate intersections. TheR&3trftarsecting
thex-edge (a degenerate case) is

(cd=0) and (chcl > 0orcPic) <0),

o (20)
(§(PQ or &(PQ)
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TABLE IV
Facets of U
Facet Double products Coordinates
x=0 Cxhs Cxys —Cazx Xps Xq
y=0 Cyh, Cyz, —Cxy Yps Yq
z=0 Czhs Czx, —Cy;z Zp, Z4
h=0 Cxhs Cyh, Czn hp, hg

and tests for the other five edges are analogous. Finally, the seB@énersects the corner
O if the double products for the three edges meetin@ atre zero,

chy =Cjd =cpl =0; (S(PQ or S(PQ or $,(PQ), (21)

and the same scheme applies for the other three corners. We interpolate the quantities
to test for intersections to compute locations of intersection points, in order to guarar
a nonzero denominator. For example, the locatidrof the surface intersection with the
x-edge (17) is

X* =to/(to —tx) (22)

which ensures that 8 x* < 1. For a segment intersection with tke-0 facet (19), we
obtain

— cha Pq
S = Cyz — Czn

x* = —cPl/s (23)

y* =c§§/s

Pg
— Cax

with the intersection tests guaranteeing g0 and also
O<x*<1 O<y*<l O<x'+y"<l (24)

For the degenerate case of the segment intersectingédge, the intersection location is

_ cI(cBY +con) + By (cBY — o)

(cB2+cl) + (e — o))’

*

(25)

which, given (20), produces9x* < 1 for exact arithmetic. Expressions for intersections
on other facets and edgesldfare derived by substituting the appropriate combinations c
double and triple products from Tables Il and IV into Egs. (22), (23), (25). To compu
vertices ofB, we define a coordinate

H=1-x-y (26)
and double products

Py
C1o = YpHg — HpYg

27
5t = HpXq — XpH @D
01 pXq — XpHg.
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The cornerX is a vertex oB if the surfacePQRintersects the ray pointing upward in the
z direction fromX, so that where

E10(PQR = (cfpcip > 0); (cfocip > 0).
n; = cf + ¢, +cf (28)
D10(PQR = (txn; > 0),

these conditions are satisfied:

E1o(PQR and Di1o(PQR. (29)

Similar tests for they and Z corners are derived by replacimgy with Co1 or cxy. The
other nondegenerate case that provides a vertBxo& segment intersecting the half-strip
above one of the edgesdfin theh = 0 plane, and for thex-edge the following conditions
establish the intersection:

(chicfd <0). S(PQ. (clicky > 0). (30)

The first two conditions are the standard two-dimensional test irz 2@ plane for the
intersection betweeRQ and they =0 edge ofU,; the third test ensures that the segmen
passes above ttex-edge ofU. The coordinates for the intersection vertex in (30) are

x*=cPl/(chl—cfp), ¥y =0z"=1-x" (31)
For the segment passing above the coXXea degenerate case, the tests are

(0= 0); (§(PQ or &4 (PQ),

(cyn + czn) (o1 — cByl) — cynehy < 0

(32)

with S defined analogously t6; in (18). Finally, the verteP is identified as a vertex of
A if it lies in the interior ofU, andP is also a vertex oB if it lies on theh =0 facet ofU
(If h=0 for the entire triangle, we remowgfrom (11) to avoid double counting.)

After the vertices oA andB have been found, the volume of the columns between the
polygons and the =0 plane is computed. The barycenigrof the m verticesx; of the
polygon is selected as an interior point,

m—-1
Xe = (1/m) > i (33)
i=0

and the vertices are sorted in circular order araxypad he volume of the column under the
polygonA, using the ordered vertices, is (whegg= Xo)

1 m—1
v(A) = & D @+ zi+ 26 Y — Yo) + Xi42(Ve — V) + XY — Yis1).  (34)
i=0
The types of nondegenerate intersections (excluding the trivial interior points) and tt
multiplicities are listed in Table V. Combining with (4), a total of 2 4 permutations
occur in the tests for nondegenerate intersections. For example, if the donor zone
tetrahedronr{; 4 = 4), there are 78 potential intersections excluding degeneracies.
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TABLE V
Permutations of Intersections
Intersection Polygons Donor elements U Elements
17) A,B n;q surfaces 6 edges
(19) A,B Neq SEgMeEnts 4 facets
(29) B n; 4 surfaces 3rays
(30) B Neq SEgMeENts 3 half-strips

2.2. Modifications for Computer Arithmetic

In floating point arithmetic, which is inexact and nonassociative, errors can affect idel
fication and computation of intersection points betw&RandU. For example, the triple
productty in Eqg. (15) may, for the same poins Q, andR, give a result that is positive,
Zero, or negative, depending on how thex(3) determinant is evaluated. Here we describe
remedies for various roundoff errors. A computed quar@tis

Q=0+450Q
3(Q) = A(Qn(Q),

(35)

where Q is the value ofQ from exact arithmeticA(Q) is the upper bound of the error
magnitude in the computation &, andn(Q) is an unknown quantity ir-1 < n(Q) <1.
Differentiating Eq. (8) gives

dV = vd(detM) + detM dv (36)
and we focus on errors fromsince detM can generally be computed to high precision unles

zones are highly distorted. Schematically, the dependencewiphysical coordinates,
transformed coordinates double products, and triple products has the hierarchy:

v(Xo, X, C, t) = v(Xo, X(Xo), C(Xo, X), t(Xo, X, C)). (37)
However, this can be simplified sinceandd do not explicitly depend oRg, giving
v(Xo, X, C, t) = v(Xo, X(Xp), C(X), t(X, C)) (38)
and we use the chain rule to differentiate

dv(Xo, X, C, 1) = (dv/ax)(dx/dXo) dXo + (v (X, C(X), t(X, €))/dc) dC
+ (dv(x, c(X), t(X, €))/at) dt. (39)
Thus, the error in computing the transformed coordinatesseparable from the error in

obtaining the volume from exact values of. Thefirsttermin (39) is bounded geometrically
since for some verteR

IVp(v)| < ~/3/2 (40)
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and for the last two terms, which contain computation errors endt, the U-frame
coordinates for vertek x;, yi, z (and alsoh; and H;) are exact. Two kinds of errors that
arise from computational noise are logic errors (a sign of a double or triple product chan
changing the intersection test and causing a discontinuity),imnd computation errors
(inaccurate interpolated intersection point).

We discuss various remedies for logic and computation errors. We list the following ca
(analogous definitions follow for the other faced Hf

o A segmenPQlies in theh =0 plane ifh, =hq =0;
o AtrianglePQRIlies in theh =0 plane ifhp =hg=h, =0;
o A segmenPQlies on thex-edge ifyp =yq =2p=24=0,

and initially exclude these cases. We have chosen not to use integer arithmetic since t
products require three multiplications, reducing the precision to less #t3saf the number
of bits available for integers, and also because in our algorithm, the scale of tfRQRis
not bounded. We assume that there is no underflow, so the product of two nonzero quan
retains the correct sign.

As discussed earlier, the coordinates, z, h, H are considered exact when we deter-
mine geometry errors in thd frame, the second and third terms of (39),

AX) = AlY) =A@ =A(h)=A(H)=0. (41)

The computed double producf can obtain a large fractional error due to subtractive
cancellation, because

pq _ _
Cxy = XpYqg — YpXq

(42)
A(CE;E) = f - (IXpYql + 1YpXql)
and this can affect the computed sign of the double product when
EHEFNCHE (43)

altering the tests that establish the existence of intersections. The tests (19), (20), (21
fail to detect intersections if the sign patterns of the double products are inconsistent \
the linear properties of the segment. We first examine the behavior of sef@Qenith
respect to an edge &f (Fig. 2a). The segment is oriented such that

Con >0, ¢ >0, cif>0, cff>0 cfl<0, (44)

and if cfl =0 the segment intersects tkeedge at pointE. A slight perturbation taf
may occur due to roundoff error. A valwd? > 0 generates an intersection with the-0
facet ofU, cil =0 intersects the-edge, andl! < 0 gives an intersection with the=0
facet (Table 1V). Regardless of the signaff!, the segment intersedtssomewhere in the
neighborhood o, and therefore the segment-edge behavior, even with inexact arithme
is consistent.

We now discuss the behavior of the segment with respect to a corner, where three e
of U meet. Since there are three double products and each may be positive, zero, or neg
there are 27 possible sign patterns for the double products, all of which are obtainable
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X X Q°

FIG. 2. SegmenPQ has large cancellations in (a) the prodagt and (b) the productsfy, i, andcy! for
the three edges that meet@t

computer arithmetic. However, not all such combinations are geometrically consiste
Consider the segmeRQillustrated in Figure 2b, wherB is in the first octant an@ is in
the opposite octant, so that

Cin >0, ¢ >0, cil >0 (45)

In the illustration,ckd, cP3, andcP are all subject to large cancellation errors since the
segment passes ne@r If the computed values of these double products are all positiv
or all negative, the segmeRQ fails to intersect any of the three facets meetingOat
(Table 1V). Therefore polygo®s may miss the vertex in the vicinity dD, that would
have been computed using exact arithmetic, causing an incorrect resultAtso, if two

of the three double products are zero, and the third is not, the geometry is inconsistent,
there are a total of 14 bad cases out of the 27 possible sign patterns. Individual test:
these cases at each corner are unnecessary, since there is a much simpler way to id

and eliminate them. The double products satisfy the algebraic relation
CyzCxh + CzxCyh + CxyCzh = 0. (46)

For consistent geometry, either all three terms of (46) are zero, or a pair of nonzero terms
opposite sign. If the computed geometry is inconsistent, we set the three double product
the corner nearest to the infinite extensiorPgjf to zero, causing the segment to intersec
the corner by (21). In addition, in order to facilitate triple product computation, we remo
imprecise double products, identified by

|cRy| < (F/HHa(cRy) (47)

by setting these double products to zero. The selection of the cancellationFagiquires
that we know something about the underlying computer arithmetic; we must guarantee
at leastF > f, but larger values oF reduce the precision of the volume calculation. If a
double product was not set to zero aag- f, its fractional error is less thafy F, and its
sign is the same as the exact sign of the double product. We have used

F = 20f, (48)
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so that accepted nonzero double products have less than 5% roundoff error. As for com|
precision, our ansatz is that

whereen, is the machine epsilon for the floating point arithmetic. Double products set
zero are tested for degenerate intersections.

Additional complications arise during the calculation of triple products, because in co
puter arithmetic the value of the result, and possibly its sign, depend on the computa
formula. From Eq. (15) three different expressionstfoare

tg) = —hpclh — heclh — hy cbd (50)
t5 = +2zpCyp + ZoCp + Z (51)
t” = —YpCoh — YaClh — VrChr- (52)

These expressions are associated witkttzex, andy zedges otJ, respectively. We compute
triple productsty’ andt3’ for the x-edge only if the double products satisfy a modified
versionEy (PQR) of the surround tesE, (PQR) in (16):

Ex(PQR = (cdiclP > 0), (clhcbd > 0), (cPdcd > 0); (53)
i.e. no two double products are opposite signs. However, iktedge makes a small angle

with the planePQR all three double products hﬁ(" may contain large cancellations. If we
usety” and

" = XpC§ + Xl + % cfd ®4)
to computex*, we can write (22) as

X* = &1Xp + E2Xq + E3Xr

& =cy/(c); +ch+cfy), et (55)

demonstrating that* is a barycentric interpolation between theoordinates of the triangle
vertices. We now define

Y* = &1Yp + &2Yq + E3%
(56)
7' = &7y + &22q + E3Z

which are mathematically zero. Imprecise cross products can lead to an intersection |
(x*, y*, z*) which is within the triangle, but where the assurmegldge intersectiorx(, 0, 0)

is outside the triangle, causing a violation of (12) and, hence, an erroneBggaation (55)
only constrains* to be within thex range spanned BlYQRbut not within the part oPQR
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FIG.3. The surface of trianglPQRintersects tha-edge at a very small angle. The normaPg&)Rpoints out
of the paper, an@®X has a small component out of the paper, passing bBIQwnd aboveQR Exact arithmetic
gives intersectiorA. Imprecise values dfy, give a computed intersectid®, and an assumed intersection pdint
on thex-edge.

that intersects the projection of tlreedge ontdPQR(Fig. 3). We fix this interpolation by
projecting out they coordinate (we could have chosey creating new weights,, by

YpCy; + YaCify + Vr ey

@ = qry2 rpy2 pgy 2
(YPCYZ) + (chyz) + (YrCyz)

Cyr = ¢j5 (1 — aypcy) (57)
b = G5 (1 — ayyCih)

P = cPI(1—aychy)

and substituting values forc values in (52), (54) to computg) andtg). For edges on the

h =0 facet, we must project out threcoordinate in order to avoid cancellations that would
cause violation of (13) whehy, hy, andh, are all much less than one. If two or marg
are zero we disallow the-edge intersection since (55) and (57) do not guarantee a corre
x*. Since we have selectdelto allow at most 5% error i values, in projection (57) the

c values retain the same signs@sut for arbitraryc values, the signs are not retained.
Without using (47) to eliminate bad double products, (57) may gigendth a different
sign fromc, causing the interpolation that computesto fail. If the surround test passes
for more than one of the axes meeting at the cotBg(PQR), E,x(PQR), andE,y(PQR

for corner X), we select the edge with the smallest angld*@R for the final value of
tx, preventing a triple product that is sensitive to (57) from being superseded by the ve
along another edge, which contains cancellations comparable to thgsedancellations
whose effect oy has not been removed by (57). A singlealue at each corner is crucial
to defining a consistent set dif tests (16), (28) for all six axes and the rays above the axe
in order to ensure that (13) is satisfied.

As described above, for the configuration in Fig. 2b the segriénintersects a facet,
edge, or corner dfJ, because we have disallowed inconsistent cases. The other possib
for segment—corner behavior is tHatand Q are in opposite octants externaldeandR is
located such tha®QRintersectd). If PQ does not touchd, the surface—edge intersection
coordinatex* must be computed with the correct sign in order to ascertain the intersect
since theD test discards intersections witi < 0. We use a method analogous to (47) to
remove imprecise triple products, and a zero triple product permits an intersection exa
at the corner.
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We now focus on the special cases listed earlier. If the segh@ig in theh =0 plane,
the segment—edge tests (20) for thye yz and zx edges reduce to the set of tests for
intersections between a segment and a triangle in two dimensions. A Vedeg inside
the triangleXYZis treated as an interior point, and if the segment intersects a corner
XYZ the corner test (21) is still satisfied since we have enforced geometric consistency
extension, if the entir@QRis in theh =0 plane, the calculation becomes mathematicall
equivalent to computing the area of intersection between two triangles, because the surf
edge test covers the cases, whe€@Rsurrounds a corner. Since the intersection betwee
a line segment and a corner in two dimensions is equivalent to the segment—-edge beh
described above (by projecting along the edge so the edge collapses to a point) there &
geometric inconsistencies in this two-dimensional computation of the area of intersect
In addition, a projection such as (57) is not needed in two-dimensional zone intersecti
because there is no need to constrain the range of coordinates when interpolating to I¢
an intersection between two segments. Therefore, as mentioned by Dukowicz [8] one |
handle special cases in two-dimensional intersections in any of a number of ways, suc
perturbing mesh points and/or double products (and not handling degenerate cases a
or explicit logic in the code. Finally, if the segment lies on an axis (such as-thés) the
only possible intersections are (21) if the segment passes through an endpoint of the
or interior points inside the edge. This is effectively a one-dimensional intersection, a tri
calculation.

To summarize, the geometric calculationtifzy; z) has been facilitated by decomposing
the target zones into simplices and the donor zones into triangular polyhedra. The lir
transformation to thé) frame has allowed us to treat all four facets of the target tet i
a symmetric fashion, and the geometric closure condition (46) is explicitly symmetric
the four coordinates. Enforcement of consistency causes the assignment of zero dc
products, which must be handled as special cases, so that, unlike the two-dimensi
case [8], we cannot simplify the algorithm by preemptively removing degeneracies.
addition, due to roundoff error in double products, a projection algorithm (57) must
applied in order to properly constrain the interpolation for intersections that depend
triple products.

3. APPLICATION: FIRST-ORDER DIRECT REMAPPING

Here we describe the use of grid intersections to perform first-order direct remapping.
distinction between direct (general) and incremental (continuous) remapping has been
cussed by Dukowicz and Kodis [5, 8]. Inincremental remaps, the target mesh is constru
by displacing the nodes of the donor mesh, and the displacement is generally small, c
pared with the spacing between nodes. During an adaptive Lagrangian—Eulerian (A
hydrodynamics simulation an iterative mesh relaxation algorithm such as the Winslo
Crowley [9] method is applied to reduce distortions in the mesh, followed by an incremer
remap to reset the physical fields. Incremental remaps have been accomplished in tw
mensions using geometric area of intersection calculations [10], but most ALE codes in’
and three [11] dimensions use advection [12] to perform incremental remaps. Typically
ALE code will perform a small number of relaxation and remap iterations per Lagrangi
physics cycle. The incremental remaps are therefore performed quite frequently, perhap:
or more times per physics cycle during a hydrodynamics simulation and, therefore, the a
racy of the incremental remap has a major impact on the overall accuracy of the simulat
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A direct remap is the transfer of a physical system from one mesh to an unrelated ta
mesh. Direct remapping has been studied in two dimensions [8, 13, 14] and three dimens
[4]. For the 2 case, Dukowicz and Ramshaw [8, 13] have shown that the densityfield
defined within each donor zone may be represented as the divergence of a vector |
and by Gauss’ theorem the integral of the field over the region of intersection betwee
donor and target zone may be replaced by line integrals over the boundaries of donor
target zones. In a different approach, Miller [14] defines the field as the curl of a poten
and uses Stokes’ theorem to define a line integral. Both of these approaches simplify
mathematical form of the remap by reducing the dimensionality of the integral, and wr
the field within a zone is a complicated analytic form requiring numerical integration
complete the remap, there is a clear advantage to using the divergence theorem to de
surface or line integral. In our case, for a first-order remé&fzy; z) is computed exactly
from the intersection points.

3.1. Overview of Remap Procedure

In this section we review various aspects of remapping. Since the donor zone bound:
do not conform with target zone boundaries, the target zone will acquire a mixture
materials if different intersecting donor zones contain different materials. For a mixed zo
the material number, volume fraction, and field quantities are stored separately for e
component material within the zone (we find that a linked list is particularly convenien
and the volume fraction$ for materiali must satisfy the closure condition

d fm=1 (58)

In a pure Lagrangian hydrodynamics simulation, the incoming donor zones are all cls
(single material), unless mixed zones were in the initial state of the problem. We consi
the case of clean donor zones in this article. However, the geometry algorithm (Sectiol
is capable of handling figures other than hexahedra, as would be obtained by brea
a mixed donor zone into parts. Usually, we are interested in remapping zone-cente
fields and node-centered fields together, since a hydrodynamics simulation may pro
a combination of fields with different centerings, such as zone-centered mass density
node-centered momentum, and we bisect hexahedral zones in order to simultaneously r
these fields.

3.2. Hexahedron Geometry

Each hexahedral zone is associated with a list of eight corner nodes for each zone,
these nodes are ordered so that 12 edges may be inferred, connected topologically as a
A 33 subgrid (Fig. 4a) is constructed by interpolating between the corner nodes with
subgrid points parameterized by

X(a, B.y) (@, B.y) € {0,1/2, 1} (59)

with a trilinear interpolation, so for example, in thedirection,

X(1/2, B, y) =1/2(x(0, B, y) +x(1, B, y)) VB, y. (60)

The interpolation parameters for the labeled points in 4a are given in Table VI.
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TABLE VI
Labeled Interpolation Points, Fig. 4a

(o, B,7) (o, B,7) (o, B, v)
0 (0,0,0) 5  (1,0,1) ¢ (0,12, 1/2)
1 (0,0,1) 6 (1,1,0) d (1/2,0, 0)
2 (0,1,0) 7 (1,11 e (1/2,0,12)
3 (0,1,1) a (0,0, 72 f  (1/2,1/2,0)
4 (1,0,00 b (0,12, 0) g (1/2,1/2,1/2)

Each hex face comprises nine subgrid points, and the face is divided into eight triang
facets, as shown in Fig. 4b. The pairs of triangles on the same face sharing an edg
coplanar, so therefore our representation of the full zone, although comprising 48 triang
encloses the same volume as a 24-faceted triangular polyhedron, a tetrakis hexahe
(TH). Dukowicz and Padial [4] have represented a hex face by a hyperboloid construc
from a bilinear interpolation between the nodes. However, the total volume of the zc
with hyperboloid surfaces is the same as the TH zone volume, and many physics code
not depend on the detailed shape of the zone boundary. The TH face may be consic
as a nine-point approximation to the hyperboloid boundary, with a systematic differel

7 L 7
6 e e 5
4 5 . 4 v
a) | . g ° . b)
d * e, * Ve
2, |
b P 3
0].- a e ;
f e
d B - g
c)
0 g . :

FIG. 4. Bisection of hexahedron: (a) full zone antiibgrid; (b) triangular facets on the front surfaces of
this zone. Pairs of facets adjoining at dashed lines are coplanar: (c) lower left front subzone of zone (a); (d)
of the six tets in the decomposition of the subzone (c). The other five teteage@bg, Obfg, Odeg and Gdg.
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between the two representations in the spatial distribution of physical field quantities,
not in the globally integrated quantities.

The next step is to complete a subzone. We begin with the six facets (out of 48) t
meet at the nodey = x(0, 0, 0). Eight points, the mesh nodg and interpolated points,
throughxg in Fig. 4a, are subzone vertices. The boundary of the subzone is completec
constructing six facets that connect the central prgnwith x, throughx¢. The resulting
subzone (Fig. 4c) contains 12 facets and 8 vertices, of which two verkges(x,) are
of order 6 and the other six vertices are order 4. For a donor meshNyittex zones and
a target mesh witlN; hex zones, we actually map\Ng subzones ontol§; subzones. We
label subzones of the donor zongasz, s. The total nodal volume;(ng) of nodeny is the
sum of volumes of associated subzomgsg from different donor zones, that contaig as
a corner,

v = Y v(zZas) (61)
Z4,5:Ng=N(Zq,s)

wheren(zy s) is defined to be the mesh node that is a corner of the subzpndn a
structured mesh, eight subzones meeting at each node (except the boundary nodes)
the basis volume for mapping nodal fields. Central points of zones are corners of nc
basis volumes, and thus the nodal basis volume is a 48-faceted polyhedron with the s
connectivity as the 48-faceted polyhedron as we have used to represent the zone vol
For the intersection volume calculation, as discussed in Section 2, the target subzor
decomposed into six tets using the long diagonal (LD) method (Fig. 4d). To decompose
subzone into five tets using the corner slicing method would effect a different definiti
of the facets and edges of the subzones, breaking the symmetry between the polyhed
nodal and zonal basis volumes.

After decomposing the target subzone into tets, we com\p(gs; z s) using the method
of Section 2. In the calculation & (zy s; z s) there are 234 permutations of nondegenerat
intersection tests per target tet (12 donor facetg238ermutations per facet), or a total
of 1404 permutations per target subzone (six tets per subzone). In the two-dimensi
generalization of this algorithm, the donor zone is a quadrilateral, and the target quadrilat
is split into two triangles. There are 20 permutations of tests per target triangle (each of
four donor segments is tested against the three target edgesafl the two rays pointing
in the 4y direction atx = 0 andx = 1), or 40 total. In addition, there are eight subzones ir
3d but only four in &, typically causing a factor of 2 increase in the number of nonzer
V(z4s; Zt.s) in 3d relative to 21 (for example, consider a mesh remapped onto itself). Th
number of possible nondegenerate intersections is therefore about 70 times greater pe
donor zone in @ than per full zone in @.

3.3. Filtering

In the filtering process, pairs of donor and target zones are preselected before procee
with the intersection calculation. Our goal is to perform the full geometry calculation only f
zone pairs with nontrivial intersections. One may contrive arbitrarily large donor and tar
meshes, where all donor zones meet all target zones, thus rendering filtering ineffec
Therefore, filtering is not guaranteed to reduce the computer resource requirement be
O(NgNy), whereNgy andN; are the total numbers of donor and target zones, but if donor at
target zones are sufficiently localized, filtering can bring considerable benefits, reduc
the time requirement t® (Ng log Ng) in most practical remap problems.
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We find the Cartesian bounding box surrounding the initial donor dofaifa domain
is the entire set, or a subset, of donor zones) by identifying the minimum and maxim
coordinates in each direction,

Xmin(Do) < Xo < Xmax(Do) N
Ymin(Do) < Yo < Ymax(Do) N (62)
Zmin(Do) < 29 < Zmax(Do).

We compute the bounding box limits of each target zgrand test for intersection between
the bounding box for; and the donor domain bounding box, to obtain the initial list o
target zones that matd,. We rank donor zoneg; in Dy according to the maximum
coordinate Xmax(Zq), to splitDg as evenly as possible (ties are broken arbitrarily) into twe
subdomainsp; andD,. The Cartesian boxes (62), foy; andD, are enclosed within the
Do box, and therefore from the initial target zone list 9 we select lists forD; and
D5,. Recursive subdivision of the subdomains, rotating among tlye andz coordinates
for demarcation, allows us to successively weed out target zones, until we obtain a dc
subdomain with one donor zone (or subzone). We only need to simultaneously store
directline of descendants of donor subdomains. Except for the lists of matching target zo
we only store collective information about the donor subdomains (by passing poiriys tc
arrays into subdomains), limiting memory usage by the filtering process to roughly seve
timesN; integers. This filtering method has been applied to both structured and unstructt
hex meshes.

We apply a second stage of filtering after transforming the donor zone (or subzone) |
theU frame for each target tet. If the entire donor zone falls into any of the half spaces

x<0,y<0,z=<0,h=<0,

(63)
x>1ly>1z>1h>1,

thenv(zy; z, ki) = 0 and the intersection calculation is not performed. We have found th
it is advantageous to invest computer time to perform this test before proceeding with
full calculation ofv(zg; z, k).

3.4. Tests of Filtering

We provide results for a simple test of the bounding box filtering algorithm using stru
tured meshes. The target is a regular Cartesian grid with spacemgd 18 zones (36
subzones) in each direction. The donor zones are rectangular, with dimerfsipasd),
rotated so the direction of elongation isJ3(1, 1, 1). In this case, the bounding box vol-
ume is proportional té® in the largef limit, while the volume of the zone is proportional to
£, leading to inefficient filtering. The number of donor zones intersecting the target dom
is roughly proportional to A¢. The filtering efficiency is defined as the ratio of number of
nonzero volumes(zg s; z s, ki) with U to the total number of overlap volume calculations
thatare carried out (in practice we use athreshglg F to avoid counting volumes of “zero
plus roundoff error”). The donor domain has 36 zones (72 subzones) in each dimens
centered at

(9a, 9a, 9a) + 1/(2v/3)(¢a, a, a)

so that for¢ > 1 the donor domain completely encloses the target domain¢ £@32 the
bounding boxes for some donor subzones encompass several thousand target subzon
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TABLE VII
Performance: Elongated Meshes

Elongation¢ CPUtime (s) Nonzerovolumes Efficiency

1 111.2 1731536 0.608
2 98.1 1382498 0.538
4 110.1 1214546 0.406
8 160.9 1122467 0.245
16 319.3 1077336 0.115
32 770.9 1059208 0.048

compare performance ford¢ < 32 in Table VII, where (63) has also been applied./As
increases, the filtering becomes less efficient, permitting more calculatianbeatfveen
nonintersecting zone pairs and reducing performance. However, a sin@ealler donor
zones) causes more donor zones to fit within the target volume, thus increasing the numk
nontrivial intersections, so that= 1 takes more time thath= 2, despite a higher efficiency.
This test suggests that a more sophisticated filtering algorithm may increase performe
when zones are highly elongated.

We compare various geometries commonly used in three-dimensional physics proble
The full implementation of the code contains the filtering stages described in Section
and Eq. (63) and several other filters buried within the geometry algorithm to weed
unnecessary intersection tests. Therefore, different logic and arithmetic operations are
formed for different donor triangléBQRin the U frame, and by testing the algorithm with
various meshes we can gain insight into the effect of mesh geometry on performance.
this test, we have defined three meshes, each with 5832 zones. The first mesh is a re
cubic 18 Cartesian grid with grid spacirg centered at (8, 9a, 9a). In the second mesh
the nodes are arranged in a cylindrical geometry with a radiua af@ 6 radial zones, 18
zones spanning a length ofd,8and 54 angular zones, also centered at 98, 9a). This is
not a true cylindrical mesh, because the zone boundaries are linear interpolations bet\
the nodes rather than arcs. The third mesh is a structurfegritB with the nodes arranged
as a tetrahedron whose base is the equilateral triangle

(4.8a, (9+ 4.2¢/3)a, 0.6a),
(4.8a, (9—4.2/3)a, 0.6a),
(17.4a, 9a, 0.6a)

with apex (&, 9a, 17.4a). At the apex, all of the nodes in a logical plane meet, resemblin
the convergence of nodes at the origin of a spherical mesh. The meshes are illustrate
Fig. 5, and the results are shown in Table VIII. In the last three rows, the meshes labe
“+” have been displaced by 18(a, a, a). In all of these tests we have verified global and
local mass conservation, ensuring that the geometry algorithm has successfully comp
the grid intersections, despite coincidences between the locations of donor and target n
edges, and facets. Although all three meshes have the same number of zones, the tota
time tyo; for the remap varies by more than a factor of 7 for the range of mesh geometr
shown here. However, the average CPU titggper geometric calculation o{zy s; z s, ki)

(ratio oft; to number of calculations) shows much less variation. Efficiency varies wide!
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TABLE VIII
Remap Results, Three-Dimensional Geometries

Full calculations of ~ CPU tinfe(us) per  Total CPU

Donor mesh Target mesh V(Zgs; Zts, Ke)? calculation ofv time (s)
Cartesian Cartesian 8% 10° 66.1 74.6
Cartesian Cylinder D1x 10 45.9 87.6
Cartesian Tetrahedron 9¥ x 1¢° 39.0 37.8
Cylinder Cartesian P6x 10° 45.2 93.1
Cylinder Cylinder 24 x 10 61.7 144.4
Cylinder Tetrahedron 91x 1¢° 36.0 140.6
Tetrahedron  Cartesian .85 x 10° 50.3 32.8
Tetrahedron  Cylinder A8x 10° 51.3 76.0
Tetrahedron  Tetrahedron M x 10 55.2 243.4
Cartesian Cartesian 1.57x 10° 45.2 70.9
Cylinder Cylinder- 2.62x 10° 46.0 120.6
Tetrahedron  Tetrahedran 3.35x 10° 51.0 170.5

a After application of (63).
b Measured on a 440 MHZ DEC Alpha.

from 0.06 for the tetrahedron self-remap to 0.79 for the Cartesian donor and tetrahec
target. When the donor and target subzones meet at a face, edge, or point, the dec
made by (63) of whether to proceed with the geometric calculatian{@fs; z s, ki) may
be influenced by roundoff effects during the affine transformation tdJtframe, making

b)

a)

FIG.5. Meshes forremap tests: (a) Cartesian; (b) cylindrical; (c) tetrahedron; (d) tetrahedron as donor may
into cylindrical target (contour approximating reconstructed interface).
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an accurate prediction of filtering performance difficult in such cases. When the tar
mesh is displaced slightly, relative to an identical donor mesh, donor zones acquire a s
intersection volume with neighboring zones, requiring more computations of nonzerc
However, thisis compensated by other donor—target pairs that are separated by displace
allowing the first stage recursive filtering to discard such pairs and avoiding the expens
the affine transformation. The overall result is a reductioh.pfn our test cases. Except
for the self-remaps, the average tirrigg vary between 36.0 and 51.3 microseconds pe
calculation ofv on a 440 MHz DEC Alpha, and the average time for the Rayleigh—Tay!c
remap, nearly 37s, falls within this range. These tests with different geometries show th
total CPU time is highly dependent on the number of computations efmphasizing the
importance of filtering.

3.5. Rayleigh—Taylor Instability

To demonstrate successful remapping of highly distorted meshes and to examine
effect of domain decomposition on performance, we have constructed a Lagrangian
drodynamics simulation of a configuration with a Rayleigh—Taylor instability. The me:
is a (25x 25 x 50) hexahedral grid. The outer boundary of the problem is a rectangu
box, elongated in the direction, with horizontal lengthlk,, = 25a and vertical length 58
The grid is initially regular in thex andy directions, and the nodes are displaced from :
regular grid in thez direction in a sinusoidal pattern. The initial coordinates for nodg k)
are

X = ai (64)
y=aj (65)
z=ak+ (a/2)(1 — |k — 25|/25) sin(2rx/Ly + /&) sin2ry/Ly + 7 /4). (66)

The top 25 zones in each column are filled with a heavy fluid with densityand the
bottom 25 zones contain a light fluid with density

o = 0.5pp. (67)

To simplify this test simulation, both fluids are treatedyas 5/3 ideal gases. A uni-
form gravitational field in the-z direction is balanced by an upward pressure gradier
to remove the free-fall acceleration. The sinusoidal displacement profile serves as the
tial seed for the growth of the Rayleigh—Taylor instability, and the zones themselves
clean (single material). Upon simulation using Lagrangian hydrodynamics, the displa
ment has grown as a function of time, and the mesh has become highly distorted (Figs
and 8). In Fig. 8 we have illustrated a boomerang zone; the mesh also contains some
intersecting zones. For our purposes, the distorted mesh has already been provided
we utilize it to test the remapping capability. We remap the physical fields (both zone- ¢
node-centered) from this distorted mesh onto another mesh which is closer to an ortt
onal grid. We use a Cartesian target mesh of 2% x 50) zones, each zone possessing
horizontal dimensiong25/26)a and vertical dimensio@, so that the node coordinates
are

(X, Y, 2) = ((25/26)ai, (25/26)aj, ak) (68)
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FIG.6. Remapping example, a Rayleigh—Taylor unstable physical configuration. Gravity along the long ¢
of mesh causes acceleration of heavy fluid (shaded) into light fluid (transparent). Heavy fluid region is shade
after Lagrangian simulation leads to highly distorted mesh, (b) after remap onto Cartesian mesh.

and a distorted mesh, where nodes with only odd indices are displaced,

(X,¥,2) = ((25/26)a(i + 0.1n), (25/26)a(j + 0.1n), a(k + 0.1x))
n=(@{mod2-(jmod?2 - (kmod?2.

(69)

Except at the problem boundary, 50% of the hex faces become nonplanar under di:
tion.

The resulting interface between the light and heavy fluids on the mesh after the remap
the Cartesian mesh is shownin Fig. 6. In Table IX we show the chaijen the integrated
mass densityl, demonstrating that global mass conservation is accurate to within seve
bits of machine precision. We have found similar accuracy in the conservation of glo
momentum, based on the remap of the node-centered momentum density. As an addit
test for each donor and target subzone we have tested the sum rules

V(zis) =Y V(s zs)

Zt s

V(zs) = V(zs )

Z4,s

(70)

TABLE IX
Rayleigh—Taylor Problem Remaps

Target mesh Target domains CPU tings) [SM|/M
Cartesian 1 596.8 Bx 10
Cartesian 8 598.8 3x 10
Distorted 1 608.6 Dx 107
Distorted 8 611.9 2x10%

@ Measured on a 440 MHZ DEC Alpha.
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D)
P>

FIG.7. Corresponding density contours of the centralice for the configuration shown in Fig. 6, (a) before
and (b) after remapping.

to ensure that the summed intersection volumes for each donor and target subzone d
fractionally exceed (in magnitude) the total subzone volume by more than a threshol
10-12. The conservation of mass to nearly machine precision (Table IX) illustrates the abil
of our grid intersection algorithm to handle meshes with distorted and self-intersect
zones. Using the second filtering stage (63) we obtain 64% efficiency in remapping |
Rayleigh—Taylor problem for both target meshes. The density profile of a cross sect
is shown in Fig. 7. The spreading of the contour lines, especially near the fluid interfa
illustrates diffusion that occurs as a consequence of the remapping process. Dukowicz
Kodis [5] have shown in a two-dimensional calculation that the diffusion can be mitigat
with a second-order remap.

In Table 1X we have also shown the effect of domain decomposition of the target mesh
performance. In a conventional remap on a serial machine, the entire target mesh is sup
as one domain and filtering selects target zones that match a donor zone, using the ¢
pool of target zones as a starting point. However, we may choose to treat the whole ta
as the union of multiple target meshes (domains), each with a portion of the original tar
The donor domain is mapped onto each target domain separately, with the filtering repe
for each target domain. We have decomposed the full target into eight domains of dimen:
(13 x 13 x 25) zones and found that the extra filtering leads to only a marginal increase
total CPU time (Table IX). This demonstrates the feasibility of a parallel implementatic
in which each of the target domains would be kept on a separate processor, suggestin
with well-designed domain decomposition and communication methods, the remapg
algorithm can potentially scale efficiently on parallel platforms. The reason for this is tt
the filtering algorithm can select and remove nonintersecting donor—target zone pairs
small fraction of the time needed to accomplish an intersection calculatignzgfs; z s)
for zones that do match.



CONSERVATIVE REMAPPING; REGION OVERLAYS 457

FIG. 8. A nonconvex zone resulting from running Lagrangian hydrodynamics to simulate the growth o
Rayleigh—Taylor instability. Six different views of the zone are shown, representing successive rotations abou
horizontal axis.

4. APPLICATION: REGION OVERLAYS

Here we discuss the application of the geometric grid intersection algorithm to reg
overlays. In region overlays, a donor region within an arbitrary target mesh is filled wi
homogeneous material, and the boundary of this region does not conform to mesh :
boundaries, allowing some zones to be partially filled with the overlay material. Hence,
region boundary after the overlay is represented by volume fractions of the region’s mate
in mixed zones that partially intersect the region. Typically the region is a shape, suct
a sphere, specified using collective parameters, such as the radius and the location c
center. Region overlays may be applied when it is not convenient to design a mesh
conforms simultaneously to different regions containing different materials. The esser
requirement of region overlays is to compute the volume of interse®ti@, z;) between
the regionR and each zong of the mesh. General shapes with curved boundaries wou
require nonlinear intersection calculations to obtain the exact valWaBf z), but since
the complexity and expense of such calculations increases rapidly with the order of
shape boundary and a fast calculation of intersection volumes is necessary to make
overlay procedure practical for meshes with hundreds of thousands of zones per proce
we construct a set of triangular polyhed?ato approximate the region and implement the
polyhedron intersection algorithm described in Section 2 to estiMé z) by

V(R;z)~ > V(P z), (71)
i
whereV (P;; z) is the intersection volume of théh polyhedron with the zong.

4.1. Triangulation

A finite approximation ofR using polyhedral elements is associated with an approxim:
tion of its surface boundary with triangular patches. The elements form a decompositio
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FIG. 9. Polyhedra derived from bisecting patches that approximate the surface of (a) sphere cer@ered :
(b) cylinder. The triangular prism (b) is converted to an octahedron by drawing segR@riRS andTU.

the figure bounded by the patches. Two cases of special interest, which we describe |
are spheres and cylinders. Polyhedral approximation methods for spheres are well kn
and can be generalized for any star-shaped object for which the ragiasontinuous and
first-differentiable function of the angular coordinafesThe polyhedra are constructed by
inscribing a regular octahedron within a sphere and by using the midpoint projection met
[16] to recursively bisect the triangular patches, producing a hierarchy of approximatic
to the sphere. For this bisection (Fig. 9a), from a triangular pgiddwith vertices on the
surface of the sphere, one constructs poRit€), and R by projecting the line segments
TU, US andSTfrom the center of the sphere onto its surface. These six points define
octahedron, four of whose facets are new surface patches, and each of these new ps
approaches/M the area and/R the linear dimensions of the original paghUas the solid
angle ofSTUapproaches zero. Recursion leweis a polyhedron that contairié, patches
andNg donor octahedra, with

Np = 2 x 4"
(72)
Ng = (2 x 4" — 5)/3.

The total volume of the polyhedig from this bisection method, compared with the sphere
volumewspn, in the limit asm approaches infinity, is

(Up — Usph)/vsph ~ _12.07/Np. (73)

The volume of intersection between each octahedron and each zone is computed to obta

approximate shape-zone intersection volume through (71). This bisection method su

from the well-known problem that at any given level of bisection the patches are small

near the vertices of the initial octahedron, with less resolution elsewhere, but by incraasir

to improve the overall accuracy of the calculation we can reduce the effects of this probils
The recursive bisection is handled differently for a cylinder. The cylinder of ldggils

cut intony, slices of thickness

ls = |cyl/nb~ (74)
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For a given slice an equilateral triangular prism s inscribed by drawing triangles on the di
at each end of the slice and connecting corresponding vertices along the length of the «
The resulting figure is a triangular prism which is cast as an octahedron by triangulating
rectangular facets. In the bisection (Fig. 9b), poi@tandR are the midpoints of segments
PT andUS, respectively, projected from the axis onto the surface of the cylinder. We hc
Is constant and use an inherently one-dimensional method to approximate the circular
with the polygon. The total number of rectangular patches and octahednaléwels of
recursion is

Np = Np(3 x 2™)/2
(75)
Ng = np(3 x 2m — 4)/2.

A one-dimensional bisection method is effective because the cylinder is a ruled surface
curvature is zero in one direction), and the error decreases more rapidly as a fun®ipn o
for a cylinder than for a sphere,

(vp — Vey) /Veyt ~ —6.58n7 /N2, (76)

and, therefore, the number of elements (polyhedr& s a function of volume accuracy
increases more slowly for a cylinder than for a sphere. For both the sphere and the cylir
the systematic volume error asymptotically scales &8 #r largem. In our examples
of overlays of spheres and cylinders, we use the same geometry algorithm describe
Section 2 for computing polyhedron intersections to compi(g; ; z;). The target meshes
are still composed of tetrakis hexahedra, but the donor zones, instead of 12 or 24 fac
polyhedra derived from hexahedra, now form an unstructured hierarchical list of octahe

Itis also possible to map a sphere or cylinder onto an arbitrary mesh by creating a dc
hexahedral mesh with nodes arranged in the geometry of a sphere or cylinder and apply
general remap. However, this conventional donor mesh gives a less accurate approxim
of the sphere or cylinder than the specialized decompositions described above. If we
sider a structured mesh, designed with an overall spherical geometrywilial zones,
N, zones in the polar direction, and 8. azimuthal zones, for a total number of donor
zones

Ng = 27°n3, (77)

the zones on the surface at the equator approximate cubes with siderlémgitinthe limit
of largen; and the solid angle of one such equatorial zone is

Q= 1/nfsr

—a3 (78)

= (Ng/2r?)
For the sphere approximation, the average solid angle per patch is

=47(3Ng + 57 (79)
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This surface patch bisection method therefore improves the accuracy of the region overla
concentrating the smallest donor elements (octahedra) near the surface and also per
well because the octahedra become smaller with each successive bisection, so that
bounding boxes match fewer target zones. If we were to design a donor hex mesh with
radial zone (so that all zones are pyramid-shaped with four nodes coincident at the cent
the sphere) the solid angle would scalei\l?;s1L asin (79), but the long, pencil-shaped zones
would create large bounding boxes and, therefore, require a more elaborate filtering sch
than we have implemented here (see Section 3.3). Development of specialized polyhe
approximations of a regio® requires knowledge of the analytic form &f, and for our
first-order remap, homogeneous fields throughout its volume.

4.2. Filtering for Region Overlays

As in Section 3.3, we seek to select only zones and octahedra for which the re
is nontrivial before proceeding with the geometry calculation. For example, a recurs
level of m=9 on a sphere of 20 zones radius produces accuracy of abottrioverlay
volume fraction (ratio of intersection volume to target zone volume), and contins :
surface triangles and 174,761 octahedra, which for a target mesh? abA@s produces
over 10* potential combinations of source octahedron and target tetrahedron. We desc
the various preselection filters in detail for a sphere shape, and filter methods for many o
shapes are analogous. Unlike for zonal remapping, we cannot simply draw a bounding
around a constituent octahedron, analogous to (62) for the remap, because descenda
the octahedron may protrude outside that bounding box, thus causing target zones 1
prematurely dropped from the list. Therefore an enlarged bounding box, which accol
for the curvature of the sphere, is constructed.

Because the material inside the sphere is homogeneous, we do not explicitly com|
the volume of intersection for zones known to be completely enclosed within the sphe
The sphere of radius is centered ab(, Y, Z;) in physical coordinates and the distance

2= —X)*+ O — Yo’ + (2 — z)° (80)

for each node is calculated. For a zone bounded by eight nodes, if the maximum nc
distance; for each nodeé satisfies

max(r?) <rZ, (81)

the zone is inside the sphere and assigned an intersection vMRgez) equal to the
full target zone volumeé/ (z;). Likewise, we identify exterior zones, with a zero overlap
volume, by

min(r) > rZ + ¢2/4, (82)

where¢? is the diagonal length of the Cartesian rectangular solid surrounding the zo
added to account for the possibility of the sphere invading the zone between the node:
The initial list of zones assigned to the initial octahedRyris the set of zones satisfying
neither (81) nor (82) and the overlay calculation is enacted bet#gemd these zones.
Using the bisection procedure from Section 4.1, we defaeo be one of then=2
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octahedra derived from the bisection ofPa facet. If thex-coordinate ofP; is bounded
by

Xo < X < X1, (83)
the limits for the enlarged bounding box are
P2 =12~ Bog/h

Xo — (Xc — Xo)fs/p  (Xo < X¢),

%o =
Xo (Xo = Xc);
(84)
. {Xl + (Xe = XDrs/p (X1 > Xc),
1 =
X]_ (Xl S XC)a

wherefpgris the diagonal length of the Cartesian box surroundi@Rin Fig. 9a. Zones
from the Py list with bounding boxes that intersect the enlarg@dbox are selected for
intersection calculations witR;. By using these enlarged boxes, we ensure that the box f
each descendant octahedron is contained within the parent’'s box, and therefore, the
selection by recursive elimination is consistent. For a cylinder, we also enlarge the dc
bounding boxes to account for curvature.

4.3. Examples of Region Overlays

We show examples of overlays of spheres and cylinders, onto regular Cartesian
distorted target meshes. The Cartesian mesh contains 50 cubic zones oéleng#th of
the three directions for a total of 125,000 zones, and the nodes are logically numbered 1
0 to 50 in each direction. The center of the sphere is located at the physical center of
cube enclosing the mesh, and we overlay spheres with rada,dfGh, and 2%. For the
distorted mesh, nodes whose logical coordinates are all odd are displaced by

0.02(a, a, a)

(no nodes on the boundary are displaced). In the region overlays, only zone-centered f
are applied to the target. A tetrahedral decomposition for the 24-faceted TH target zor
used, with an average of about 12 tets per zone if all zone boundaries are nonplanar, ¢
tets per zone if all boundaries are planar. In our distorted mesh, 50% of the zone bound
for interior zones (away from the domain boundary) are nonplanar. For the cylinder,
length is 5@ along one Cartesian direction, and we use radiiaflDa, and 2%. We have
used for the cylinder

ls = floor(ley/a)

(85)
a = (Vi/NpY3,

where, is the total volume of the target medh; is the number of zones, arad is an
estimate for the average length of a zone, which yialgs 50 slices for our test cylinders.
In Fig. 10, we show the CPU times for spheres and cylinders on a single 440 MHz D
Alpha for various radii and levels of bisection, and we also compare the Cartesian mesh
the distorted mesh which contains surface tets on nonplanar faces. The filtering saturat
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Sphere Overlay CPU Time Cylinder Overlay CPU Time

CPU Time (sec)
CPU Time (sec)

6 7 8 9 10 11 6 7 8 9 10 11
Bisection Levels Bisection Levels

FIG. 10. CPU time required to overlay (a) spheres and (b) cylinders of various radii onto Cartesian (dash
and distorted (solid) meshes, as a function of number of bisection lewels,

largem when the donor elements (octahedra) become point-like for a sphere, or filame
like for a cylinder. For example, a donor octahedron and all of its progeny may reside wit|
a single target zone, and if no other target zones’ bounding boxes touch the octahedrc
progeny will contain only that one target zone as their lists of matching zones. The tc
number of elementdly at layerm increases by a factor of 4 per layer for a sphere, bu
only 2 per layer for a cylinder, so we expect that for largavhen the element volume
becomes much smaller than a zone volume (and filtering saturates), the computer
spent on geometry will asymptotically scaleMg~ 4™ for the sphere and dsy ~ 2™ for

the cylinder (linearly withNg). At the larger values ofn the sphere time increases more
rapidly as a function afnthan does the cylinder time. Even in going from= 10 tom=11,
however, the increases of both the sphere and the cylinder CPU times are still consider
less than linear ilfNg, suggesting that the filtering has not quite reached saturation.

5. GRID INTERSECTIONS IN HYDRODYNAMICS

We perform tests of the remap and region overlay calculations as they relate to hydrc
namics simulations of two test problems, the spherically symmetric expansion of an id
gas [15] with specific heat ratip =5/3 and the Sedov spherical shock wave [15]. We
consider a situation where it is necessary to represent the physical system on a Cart
mesh after the simulation and measure the total energy lost to momentum diffusion.
example, a postprocessing code may require a Cartesian grid. The hydrodynamics
uses a second-order explicit Lagrangian predictor—corrector acceleration algorithm,
after every Lagrange cycle the mesh nodes are shifted in order to reduce distortion
an incremental remap, based on a stripwise implementation of a second-order adve
procedure [12], is used to transfer material to neighboring zones on the adjusted mesh.
amount of transfer between neighboring zones is computed directly from the displacen
of nodes on the boundary between the two zones during mesh relaxation. During the ac
tion a gradient limiter is applied [12] to prevent the formation of artificial critical points, an
thus, the advection is not strictly second-order accurate everywhere. These second-(
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Lagrange and advection procedures have recently been appli€ las8r physics simu-
lations [11]. We consider two schemes for arriving at a Cartesian mesh at simulation ti
t =T, beginning with a Cartesian meshtat O:

(1) Relax the nodes to the original Cartesian positions after every cycle, and remap
fields.

(2) Relax the nodes using a local equipotential method [9] and remap after every c
an ALE method, allowing the mesh to deform over time. Remap directly to a Cartes
meshat=T.

For both tests, we begin with a #Cartesian mesh with total side length 6 cm and the
coordinate origin at a corner. The background gas in the expansion (rarefaction) wave
densityp and specific internal energyof

p =10"%g/cm?
e =0.

(86)

One octant of a sphere of radits= 1.5 cm, centered at the corner (0, 0, 0), is placed ont
the Cartesian mesh using the method of Section 4. This sphere contains the same g¢
material boundary is tracked) with

o = 1glcm?

(87)
e =5x 10%erg/g

(pressure is 1B x 10'° dyn/cnt inside the sphere). In the Sedov shock, we initialize witf
cold background material with

p = 103g/cn?
e =0,

(88)

except in the single zone at the origin, where we set the specific internal energy to
109 erg/g (pressure is ¥8 x 10°dyn/cnt). Reflective boundary conditions are enforcec
on the three planes of the mesh that meet at the origin. On the opposite three planes, in
to maintain the integrity of the mesh, we fix the node locations, allowing material to flc
outward through the boundary. We determine an appropriate finalTifog demanding
that less than 10 of the total mass has been lost through the outer boundary, ensuring t
the loss of total energy due to outflowing material is insignificant, and choose

T =60us (rarefaction
(89)
T =1250us (Sedov shock

Since the gas before the wave (or shock front) is not traveling significantly faster than
wave itself, and the gas at the outer boundary begins at zero temperature, the fraction o
energy due to mass loss is comparable to or less than the fraction of lost mass. We me:
the total problem energy before and after the incremental remap at every cycle and, t
isolate the total energy deficit due to momentum diffusion during the incremental remn
from numerical drift of the energy during the Lagrange cyclet AtT, we remap the fields
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Rarefaction Wave Simulations

1.00
0.99 |
E° 0.98 |
=
— EQP2
097 I |- EQP1 1
e FULL2 +
0.96 ; . :
0.0 2.0 4.0 6.0
Time (11s)

FIG.11. Energy normalized to initial energy for rarefaction wave versus simulation time. The vertical cross
are the total energy of the EQP2 and EQP1 systems after direct remap to Cartesian mesh.

from the distorted ALE mesh to the original Cartesian mesh and calculate the kinetic ene
before and after remapping. In Fig. 11 we show the total energy as a function of time
the simulation of the rarefaction wave, and the energy for the Sedov shock is showr
Fig. 12. In all of these runs, over 98% of the energy lost during the simulation is attributal

Sedov Shock Simulations

— EQP2
--- EQP1
~— FULL2

0.60 -
0.0 500.0 1000.0

Time (ls)

FIG.12. Same as Fig. 11, for Sedov shock.
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to the momentum diffusion during the incremental remaps, with the remainder of ene
loss during the Lagrangian evolution.

In these figures, we have used three grid motion schemes, local equipotential relaxe
of the nodes after every Lagrange step with second-order advection (EQP2), equipote
relaxation with first-order advection (EQP1), and full relaxation to the original positiot
after each Lagrange step (FULL2). The FULL2 method returns the problem to a Cartes
mesh after every step and uses second-order stripwise advection. At the findl, tihvee
EQP2and EQP1results are directly remapped to the Cartesian mesh, as describedin Se
2 and 3. The energies of these configurations after the direct remap are shown as plus
in Figs. 11 and 12. The plots show that the energy lost in an application of the first-or
direct remap, performed after the simulation, is less than the energy lost to momen
diffusion during the advection. This interpolation technique (3), if needed for frequent L
within the hydro, would need to be improved to second-order in order to prevent exces
diffusion. The direct remap CPU items for the EQP2 runs are 1210 s on a 440 MHz D
Alpha for the Sedov wave, and 1010 s for the rarefaction wave.

6. SUMMARY

We have developed a fully geometric algorithm for grid intersections between polyhec
meshes and demonstrated applications to remapping of physical configurations from
mesh to a different mesh and to region overlays. This geometry algorithm represent
improvement over the method of Dukowicz and Padial [4] because we are able to detec
possible intersections between zones and because we handle coincidences between
and target nodes, edges, and facets without altering the positions of nodes, thus alloy
us to conserve mass to nearly machine precision. We have demonstrated the use of r
overlays to initialize and remapping to postprocess meshes for hydrodynamics simulati
For our remap tests, the speed ranges from 53 full target zones per second for the S
shock and 57 zones per second for the Rayleigh—Taylor test (Cartesian target) to 64 t:
zones per second for the rarefaction wave. A preliminary test using domain decomposi
suggests that a parallel implementation will be relatively straightforward and potentiz
scale efficiently with the number of processors.

There are several ways in which we plan to provide enhancements to the remap]
procedure. We will handle mixed zones in the donor mesh by decomposing these zones
polyhedral parts, each of which contains a single material, before computing the volur
of intersection between each part and the target zones. We also plan to implement r
optimal filtering algorithms, tailoring these algorithms to particular mesh geometries.
second-order remap procedure, with the density §i&ld within each zone alinear function
of x, is planned in order to reduce the effects, such as loss of kinetic energy, arising fi
diffusion, thus increasing the accuracy of the remap.
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